Menu
Contact Us Search

Science Spotlight

Science Institute News

rss

Recent accomplishments of CDFW's scientific community


Amargosa Vole Study

Amargosa Vole Study

a tiny, gray rodent in a gloved hand
a tiny, brown rodent in a gloved hand
a tiny brown rodent in a gloved hand

A tiny, endangered mammal is the subject of an extraordinary conservation effort near the communities of Shoshone and Tecopa in Inyo County.

The Amargosa vole is unique to the Mojave Desert, and today, scientists estimate there are only about 500 remaining in the wild. Though the Amargosa vole is rarely seen by humans, biologists recognize that it is a key link in the native food chain. Predators, including raptors and water birds, share the desert marshes where they live, and the extinction of the Amargosa vole would have a ripple effect on these and many other species as well.

For a year, a scientific team consisting of CDFW, UC Davis and US Geological Survey biologists have conducted intensive research into the life cycle of this little vole. The team visited every marsh that potentially could be inhabited by voles – they mapped the marshes, assessed habitat quality, and determined whether or not voles were present. In a subset of larger marshes the team conducted more detailed assessments of water inflow-outflow, soil moisture and vegetation, and captured voles to estimate local population numbers, assess the health of the voles and take samples for disease and genetics studies. In addition to the hands-on study in the desert, they also studied satellite data to track the amount of vegetation and water in the area over a period of time. A grim picture emerged of a habitat range in decline, due in large part to climate change and human modification.

Some of the findings included:

  • Total available habitat for the voles decreased 37 percent between 2012 and 2015.
  • Over decades, global climate change has caused a gradual decrease in water in this region. California’s recent drought has exacerbated the problem.
  • Of the more than 80 marshes that were documented at the beginning of the study, about 60 have degraded and/or dried up. Those that remain are almost all too small to sustain vole populations. Just as pandas eat only bamboo, the Amargosa vole survives solely on bulrush, a plant that grows in desert marshes.
  • Another important finding was that 80 percent of the individual voles found and tracked during the study were adults. This indicates low birth rates and survival rates for juveniles – more barriers to the species’ recovery.

Scientists believe that the network of springs and marshes in the vole’s natural range has been so extensively modified by humans that the vole’s future existence will depend almost entirely on whether humans continue to supply water where and when needed. They found evidence to support this, as an intensive restoration effort at one of the largest marshes showed signs of successfully supporting and sustaining voles.

The report authors identified several specific measures that could be taken to increase vole habitat and improve their chances of survival – including reconfiguring water inflow and outflow, changing elevations and planting vegetation that would enhance existing marshes and/or better connect adjacent marshes.

This study is part of a larger long-term effort to secure a future for the Amargosa vole and the unique marsh ecosystems it depends upon in the Mojave Desert. In late 2014 vole numbers became so low that scientists initiated a captive breeding program at the UC Davis School of Veterinary Medicine to reduce the risk of extinction. Today more than 100 voles are in the captive colony at UC Davis – providing a potential source of animals for release into restored habitats, and an important insurance population to prevent extinction.

Photos by Don Preisler/UC Davis School of Veterinary Medicine


CDFW Implants Transponders into Spring-Run Chinook

CDFW Implants Transponders into Spring-Run Chinook

A tiny transponder is placed inside the body cavity of each female salmon. When the fish lay their eggs, the transponders will be expelled, providing scientists with information on when, where and how successful each spawning female is.

a man in a CDFW uniform places a live salmon into a holding tank
After the salmon are tagged, they are returned to a holding pond while the anesthetic wears off.

a man's hands hold a large salmon in an examining trough
CDFW scientists electronically identify and perform an ultrasound on each fish in order to assess their pre-spawning condition.

man holds a salmon up
Each salmon in the project received a tiny identity tag that is entered into a database. The computerized system allows biologists to follow individual fish throughout their life cycle.

three women type on laptop computers in a tent
A team of scientists read, evaluate and record data for each individual salmon.

On Thursday, May 18, fisheries biologists implanted acoustic transponders into 60 endangered adult spring-run Chinook salmon. The transponders will track their movements and help determine spawning success later this season. The salmon will be released to spawn naturally in the San Joaquin River near Friant over the next three months.

Spring-run Chinook have been absent from the river for many decades. Reintroduction is one of multiple strategies biologists are using to reestablish naturally spawning runs of these fish as part of the San Joaquin River Restoration Project. The project – which is jointly coordinated by CDFW, the Bureau of Reclamation, the California Department of Water Resources, the U.S. Fish and Wildlife Service and the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service – is a comprehensive, long-term effort to restore flows to the San Joaquin River from Friant Dam to the confluence of the Merced River and restore a self-sustaining Chinook fishery while reducing or avoiding adverse water supply impacts from restoration flows.

A total of 120 salmon will be implanted and released at two different times. Biologists will track the fish from each release to determine which is most successful. This release strategy provides the hatchery-raised salmon the opportunity to select their own mates, construct redds (a spawning nest in the stream gravel) and spawn naturally.

CDFW photos by Harry Morse



Recent Posts

  • For 21 Years, Volunteer Has Kept Tabs on Morro Bay’s Black Brant Posted 6 days ago
    Banded black brant feeding on eelgrass Volunteer John Roser in the field at Morro Bay Flock of black brant in flight above Morro Bay Black brant in Morro Bay John Roser began hearing the stories shortly after he moved to Los Osos, San ...
  • CDFW Gets a Jump on Preserving Sierra Nevada Yellow-legged Frogs Posted 2 weeks ago
    It does not take a leap of faith to believe that CDFW scientists have gained the upper hand in bolstering the population of yellow-legged frogs in the High Sierra. Over the past three decades, Sierra Nevada yellow-legged frogs have become ...
  • California Fish and Game, Volume 103, Issue 3 Posted 3 weeks ago
    The latest issue of California Fish and Game, 103-3, makes a significant contribution to the body of research related to longfin smelt in California. A paper titled, “Historic and contemporary distribution of Longfin Smelt (Spirinchus thaleichthys) along the California ...
  • The Challenges of Studying Roosevelt Elk Posted 3 weeks ago
    For residents of Humboldt and Del Norte counties, the majestic Roosevelt elk is a common sight. Although Roosevelt numbers were dwindling in California by the 1920s, conservative management strategies and limited hunting opportunities have helped them to rebound. Today, ...
  • Badly Burned Ursines Get Back on their Feet – Thanks to Teamwork and Fish Skin Posted last month
    The tilapia skin is visible on the bottom of the bear's paw. Veterinarians perform an ultrasound to check on the progress of the second bear's pregnancy. Acupuncture needles assist with pain management. After placing the second bear, the team moved the first ...
Read More »

CDFW Science Institute logo