Menu
Contact Us Search

Science Spotlight

Science Institute News

rss

Recent accomplishments of CDFW's scientific community


Deer DNA Study in the Sierra Nevada and Central Coast Ranges

Deer DNA Study in the Sierra Nevada and Central Coast Ranges

A buck with a collar walks through brush on a hillside
A young woman attaches a trail camera to a dead tree trunk.

Deer population estimates are an important element of the California Department of Fish and Wildlife’s (CDFW) management decisions regarding the species – including setting quotas for deer-hunting seasons, acquiring land and identifying habitat improvement projects. Historically, CDFW has relied upon helicopter surveys to obtain these population estimates, but such surveys can be problematic. While they are effective in open and largely flat areas, they are less so in tree-laden areas where deer are hidden from sight. They can also be extremely expensive.

Now, thanks to emerging DNA technology, scientists are exploring a less invasive, cost-effective alternative: Analysis of what the deer leave behind.

The use of DNA is not new, of course – CDFW has used hair or tissue samples to extract DNA and identify individual animals for years. But scientists are finding that the painstaking collection and analysis of deer droppings is particularly useful because it allows them to gather the necessary information without physically touching (or stressing) the animals. And that, one might say, is the “bottom line.”

Fecal DNA analysis is being used by wildlife biologists in the North Central Region as part of a six-year region-wide study of mule deer (Odocoileus hemionus) that will provide population estimates in areas where data has previously been lacking. CDFW scientists, in cooperation with UC Davis, will use the deer pellets to take a genetic “fingerprint” designed to help estimate deer populations.

Starting in 2016, a crew began setting transects for pellet collection in the standardized sampling locations (known to hunters as deer zones X6a/b, X7a/b and X8) which are located in Lassen, Plumas, Sierra, Nevada, Placer and Alpine counties. After starting points were randomly selected, habitat information and pictures were collected along with fresh pellets. After the pellets were removed from the area in an initial sweep, scientists revisited the transect once a week for three more weeks to collect new samples. Between July and September of 2016, biologists visited 43 different transects in the summer range and collected and analyzed 458 fresh pellet samples. Staff also captured 20 does and seven bucks and fit them with satellite collars that produced data that helped identify summer home ranges.

CDFW will also use DNA to identify individual deer to help gather buck/doe/fawn ratios. Biologists will then combine the DNA data with home range data from collared deer to calculate the estimated number of deer in the population. This year staff have already completed another 36 plots and collared 18 more deer. Another series of pellet collections is scheduled next year, with a goal of continuing until all 17 counties in the region have been sampled.

Although several DNA projects are occurring across the state, this project is the largest landscape-level study for deer in California. The study is funded through CDFW’s Big Game Account, a dedicated account that provides research and management funds for game species. The University of California will conduct the laboratory work and statistical analysis.


Amargosa Vole Study

Amargosa Vole Study

a tiny, gray rodent in a gloved hand
a tiny, brown rodent in a gloved hand
a tiny brown rodent in a gloved hand

A tiny, endangered mammal is the subject of an extraordinary conservation effort near the communities of Shoshone and Tecopa in Inyo County.

The Amargosa vole is unique to the Mojave Desert, and today, scientists estimate there are only about 500 remaining in the wild. Though the Amargosa vole is rarely seen by humans, biologists recognize that it is a key link in the native food chain. Predators, including raptors and water birds, share the desert marshes where they live, and the extinction of the Amargosa vole would have a ripple effect on these and many other species as well.

For a year, a scientific team consisting of CDFW, UC Davis and US Geological Survey biologists have conducted intensive research into the life cycle of this little vole. The team visited every marsh that potentially could be inhabited by voles – they mapped the marshes, assessed habitat quality, and determined whether or not voles were present. In a subset of larger marshes the team conducted more detailed assessments of water inflow-outflow, soil moisture and vegetation, and captured voles to estimate local population numbers, assess the health of the voles and take samples for disease and genetics studies. In addition to the hands-on study in the desert, they also studied satellite data to track the amount of vegetation and water in the area over a period of time. A grim picture emerged of a habitat range in decline, due in large part to climate change and human modification.

Some of the findings included:

  • Total available habitat for the voles decreased 37 percent between 2012 and 2015.
  • Over decades, global climate change has caused a gradual decrease in water in this region. California’s recent drought has exacerbated the problem.
  • Of the more than 80 marshes that were documented at the beginning of the study, about 60 have degraded and/or dried up. Those that remain are almost all too small to sustain vole populations. Just as pandas eat only bamboo, the Amargosa vole survives solely on bulrush, a plant that grows in desert marshes.
  • Another important finding was that 80 percent of the individual voles found and tracked during the study were adults. This indicates low birth rates and survival rates for juveniles – more barriers to the species’ recovery.

Scientists believe that the network of springs and marshes in the vole’s natural range has been so extensively modified by humans that the vole’s future existence will depend almost entirely on whether humans continue to supply water where and when needed. They found evidence to support this, as an intensive restoration effort at one of the largest marshes showed signs of successfully supporting and sustaining voles.

The report authors identified several specific measures that could be taken to increase vole habitat and improve their chances of survival – including reconfiguring water inflow and outflow, changing elevations and planting vegetation that would enhance existing marshes and/or better connect adjacent marshes.

This study is part of a larger long-term effort to secure a future for the Amargosa vole and the unique marsh ecosystems it depends upon in the Mojave Desert. In late 2014 vole numbers became so low that scientists initiated a captive breeding program at the UC Davis School of Veterinary Medicine to reduce the risk of extinction. Today more than 100 voles are in the captive colony at UC Davis – providing a potential source of animals for release into restored habitats, and an important insurance population to prevent extinction.

Photos by Don Preisler/UC Davis School of Veterinary Medicine



Recent Posts

  • Badly Burned Ursines Get Back on their Feet – Thanks to Teamwork and Fish Skin Posted 13 hours ago
    The tilapia skin is visible on the bottom of the bear's paw. Veterinarians perform an ultrasound to check on the progress of the second bear's pregnancy. Acupuncture needles assist with pain management. After placing the second bear, the team moved the first ...
  • Study of Songbirds’ Calls Provides Important Climate Insight Posted 3 days ago
    The automated recorder model the scientists used. (CDFW photo by Brett Furnas) Two avian researchers recently completed a groundbreaking study on the effects of climate change, based on the calls of California’s songbirds. By recording the sounds made by eight ...
  • Ridgway’s Rail Release Posted last week
    Staff of several wildlife agencies carry light-footed Ridgway’s rails (previously known as light-footed clapper rails) to Batiquitos Lagoon Ecological Reserve. A light-footed Ridgway’s rail is banded before release into Batiquitos Lagoon Ecological Reserve. The Ridgway’s rail is a grayish-brown, chicken-sized ...
  • How Aquaculture will Shape the Future of Olympia Oysters at Elkhorn Slough Posted last month
    Kerstin Wasson is leading the Olympia oyster restoration at Elkhorn Slough. Kerstin Wasson photo. Scientists are working hard so that a new generation of Olympia oysters may one day line the mudflats at the Elkhorn Slough Reserve. Volunteers Ken Pollak and ...
  • Banking on a Future for California’s Natural Resources Posted 2 months ago
    A California red-legged frog sits motionless at the edge of McClure pond at the Sparling Ranch Conservation Bank. Photo by Ashley Spratt/USFWS McClure pond is one of the most productive California red-legged frog ponds at the Sparling Ranch Conservation Bank. ...
Read More »

CDFW Science Institute logo